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The objective of this program is to develop an integrated life prediction model

accounting for all potential life-limiting Thermal Barrier Coating (TBC) degradation

and failure modes including spallation resulting from cyclic thermal stress, oxida-

tion degradation, hot corrosion, erosion and foreign object damage (FOD). This
overall program objective will be accomplished in two phases. The goal of the first

phase is to determine the mechanisms and relative importance of the various degra-

dation and failure modes, and to develop and verify the methodology to predict

predominant mode failure life in turbine airfoil applications. Phase I will develop

an empirically-based correlative model relating coating life to parameterically

expressed driving forces such as temperature and stress. The effort in this phase
consists of three tasks: Failure Mechanism Determination (Task I), Modeling (Task

II), and Substantiation Testing (Task Ill). Phase II will experimentally verify

Phase I models and develop an integrated, mechanistically-based life prediction

model including all relevant failure modes. The program is currently in the final

stages of Task I; predominant failure modes have been identified and a preliminary

life prediction model is being developed.

The two layer TBC system being investigated, designated PWA264, is currently in

commercial aircraft revenue service, on turbine vane platforms in the JTDD and 2037

engines. It is also bill-of-material on turbine vane airfoils in the advanced

PW4000 and IAE V2500 engines. The TBC consists of an inner low-pressure chamber

plasma sprayed NiCoCrAIY metallic bond coat (4-6 mils) and an outer air plasma-

sprayed 7 w/o Y203-Zr02 (8-12 mils) ceramic layer (figure l). The composition

and structure of this coating are based in part on effort conducted under previous

NASA sponsored programs (ref. I and 2).

PHASE I, TASK I - FAILURE MECHANISM DETERMINATION

A review of experimental and flight service components as well as laboratory
test evaluations indicates that the predominant mode of TBC failure involves

thermomechanical spallation of the ceramic coating layer. This ceramic spallation
involves the formation of a dominant crack in the ceramic coating parallel to and

closely adjacent to the topologically complex metal ceramic interface (figure 2).

This cyclic "mechanical" failure mode clearly is influenced by thermal exposure

effects as shown by results of experiments conducted to study thermal pre-exposure
and thermal cycle-rate effects (ref. 3-6).

EXPERIMENTAL DESIGN AND TEST PLAN

The Task I, "Failure Mechanism Determination" investigation was designed to

evaluate the relative importance of various thermomechanical and thermochemical
"damage" modes, focusing on thermal stress cycling, oxidative degradation and their

potential interaction. The primary experimental method used in this investigation
was cyclic burner rig testing. The cyclic tests were conducted with both clean and

*Work done under NASA Contract NAS3-23944.
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contaminated fuels to assess the importance of hot corrosion induced ceramic

spallation (ref. 7 - lO). Static furnace tests also were performed to evaluate the

relative importance of oxidation and other thermal exposure effects. The test

matrix (figure 3) was designed to study the influence of various "driving forces"

such as temperature, thermal cycle frequency, environment, coating thickness and

pre-burner rig test thermal exposure on TBC spalling life. To provide property data
required for subsequently described thermal and stress analyses, physical and

mechanical property tests are being conducted on monolithic ceramic and metallic

specimens fabricated to simulate the composition and structure of the respective

coating layers.

CRITICAL EXPERIMENT RESULTS

All burner rig and furnace test specimens exhibited the typical ceramic spalla-

tion near the metal-ceramic interface, with a thin layer of ceramic remaining

adherent after failure. Examination of the laboratory data clearly shows a strong

temperature effect; comparison of these data with typical engine test conditions

suggests that "cyclic content", (i.e., relative frequency and severity of engine
thermal cycling) also strongly influences TBC spallation life (figure 4). Oxidation

damage occurring at the ceramic-metal interface for laboratory testing was found to
be somewhat greater than that found for engine exposed failures. This is attributed
to the relatively high interface temperature employed in the accelerated laboratory

spallation life testing.

In the laboratory tests conducted to study environmental effects, results

suggest that bond coat oxidation damage at the metal-ceramic interface contributes

significantly to thermomechanical cracking in the ceramic layer. Low cycle rate
furnace exposure in air versus exposure in Argon clearly shows a dramatic increase

of spalling life in the non-oxidizing environment (figure 5). The results of burner
rig testing indicated that static thermal pre-exposure of burner rig test specimens

in air causes a proportionate reduction of cyclic thermal spalling life, whereas

pre-test thermal exposure in Argon does not reduce cyclic thermal spalling life

(figures 6 and 7). Typical respective pre-test microstructures for air and Argon

pre-exposed specimens are shown in figures 8a and b.

Laboratory testing was conducted in clean and contaminated (Na, S) fuel envi-
ronments to evaluate the hot corrosion spallation resistance of the TBC. Corrodant

induced failure was observed during cyclic hot corrosion testing at high corrodent

levels (35 ppm Na2SO 4) but not for low corrodent levels (lOppm Na2S04). The
failure mode, which has not been observed on engine exposed components, involved

"flaking" of small patches of ceramic above the typical failure location.

Testing was also conducted to evaluate the effects of ceramic thickness on TBC

spalling life. Ceramic thickness was found to have an effect on coating durability
(figure 9). Thick coatings were found to decrease TBC life while thin coatings

increased it as compared to the "baseline" lO mil thick ceramic.

PHASE I, TASK I PRELIMINARY LIFE PREDICTION MODEL DEVELOPMENT

The preliminary life prediction model currently being developed focuses on the

two major damage modes identified in the laboratory testing described above. The

first of these modes involves a mechanical driving force, resulting from cyclic

strains and stresses caused by thermally induced and externally imposed loads. The

second is an environmental driving force which appears, based on the experimental

results, to be related to "oxidation damage", most probably to the in-service
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growth of a NiCoCrAIY oxide scale at the metal-ceramic interface. Based on the

apparently "mechanical" mode of ceramic failure, it is presumed that the growth of
this oxide scale influences the intensity of the mechanical driving force. The

mechanism(s) of this "interaction" are not presently understood, and no attempt is

being made to incorporate interaction effects in the initial model, which will be

based on linear damage summation. Interaction effects will be considered in the

refined model to be developed in Task 2 of this program.

Mechanical failure of the ceramic layer is presumed to involve accumulation of

fatigue "damage". Possible mechanisms for the accumulation of this damage might

involve the initiation and propagation of a dominant crack in the ceramic, or

possibly the subcritical growth and subsequent link-up of pre-existing microcracks
in the ceramic structure. Metallographic examination of specimens removed from

burner rig test prior to spallation failure presently is being conducted to identify

specific mechanical damage accumulation mechanism(s).

Cyclic inelastic strain range in the ceramic layer will be used to represent

the driving force for mechanical damage in the life model. Use of this parameter is
based on results of mechanical (reversed bend) tests conducted on monolithic ceramic

specimens having a porous, microcracked microstructure representative of the ceramic

coating. These results have shown highly non-linear stress-strain behavior with

significant stress-strain hysteresis in reversed loading . Finite element calcula-
tions of ceramic inelastic strain range are being conducted for each of the Task I

burner rig test conditions using transient thermal data obtained from thermocouple

instrumented test specimens. It is presently planned to use a relatively simple

empirical relationship such as Manson-Coffin to express the functional dependence
of mechanical "damage" on ceramic inelastic strain range.

Based on the observation that thermal exposure damage appears to be related to

oxidation effects, the relationship between thermal damage accumulation rate and

primary exposure parameters (time and temperature) will be based on the accepted

parabolic and exponential forms appropriate to oxidation kinetics.

A major shortcoming of the present model is the absence of any provision for
interaction between environmental and mechanical damage. The relatively coarse

preliminary finite element break-up constructed to represent the substrate coating

structure incorporates a planar metal-ceramic interface and predicts essentialy no
change of stress level with growth of an interfacial oxide scale. Thus, oxidation

effects will be "forced" in the preliminary model using the linear damage summation

approach. One approach which will be evaluated in an effort to incorporate interac-
tion effects in the refined Task 2 model will involve an attempt to represent, in a

relatively simple geometric form such as that employed by G. C. Chang (ref. ll),

the very complex (rough) topological form of the real physical interface shown in

figure I. Other changes to the relatively simple functional forms used in the

preliminary Task I model undoubtedly will be suggested by ongoing microstructural
damage interpretation and by testing this preliminary model against additional

burner rig verification tests to be conducted at the conclusion of Task I.

VERIFICATION TESTING - WORK PLANNED

To verify the preliminary Task I prediction model, additional burner rig tests

will be conducted using test parameters and methods which are different from those

used to generate the data on which the model is based. The test method will involve

exposure of a single rotating specimen located in the center of the burner rig

spindle. This will improve and simplify temperature measurement and control, and
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will eliminate circumferential thermal gradients which are inherent to the multiple

specimen configuration used earlier in this task. To improve the simulation of air-

foil conditions the specimen will be hollow and incorporate internal cooling, thus

providing a steady state thermal gradient across the TBC. Three sets of test para-
meters will be selected to simulate typical airfoil mission cycles.
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Figure 2 Typical Thermal Barr ier  Coating Fai lure  Mode 
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Figure 8a and D Microstructural Variations f o r  Pre-Test Thermal Exposure 
Atmospheres, ( a )  Argon and (b) Air 
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